

Pan Language Compiler Documentation

Release Notes

	Release Notes

Reference Manual

	Pan Language

Appendices

	Standard Functions

	Command Reference

	Getting the Compiler

	Running the Compiler

Search

	Search Page

Release Notes

This document the release notes for the pan language compiler release notes
as well as a detailed change log. See the full documentation for
information about the pan language and use of the compiler.

	License

	Support

	Upcoming Changes

	Change Log

License

Licensed under the Apache License, Version 2.0 (the “License”). You may
obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0. Unless required by
applicable law or agreed to in writing, software distributed under the
License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for
the specific language governing permissions and limitations under the
License.

Support

The v10 series is in active development; the v9 series is frozen. Both of
these series are supported.

The old v8 series of releases is no longer supported. Migration from v8
to a more recent release is very strongly recommended.

Upcoming Changes

The following upcoming and potentially breaking changes are scheduled for
the next major pan compiler release (v11):

	Support for the file extension ‘.tpl’ is deprecated and will be removed
in the v11 series of the compiler. Rename your pan source files from
‘.tpl’ to ‘.pan’.

	The path ‘/panc’ will be reserved by the compiler. Values under this path
will be used to transmit information about the pan compiler version and
compilation flags to downstream tools. Avoid putting configuration
information in the ‘/panc’ part of the configuration tree.

Change Log

Version 10.4

	(GitHub Issue #118) Built-in join function.

	(GitHub Issue #121) Implement choice type.

	(GitHub Issue #122) Formatting.

	(GitHub Issue #123) Implement built-in validate function to check type.

	(GitHub Issue #124) Working initial-data command line option.

	(GitHub Issue #125) Standalone pan tests.

	(GitHub Issue #126) Support booleans with (in)equality operator.

Version 10.3

	(GitHub Issue #105) Resource protection should be deep, not shallow.

	(GitHub Issue #107) Fix error message for undefined values.

Version 10.2

	(GitHub Issue #80) enable automated build of documentation on the
http://quattor-pan.readthedocs.org/.

	(GitHub Issue #79, #81) move documentation sources from DocBook to
restructured text.

	(GitHub Issue #76) remove ‘object’ template reference in output stats

	(GitHub Issue #71, #72, #73, #74, #75) add options for displaying the
pan compiler version and update documentation

	(GitHub Issue #70) create a null formatter mainly for performance testing

Version 10.1

	(GitHub Issue #68) revert a couple of UTF-8 read/write changes to
conserve backward compatibility

	(GitHub Issue #67) update source and bytecode to java 1.6

	(GitHub Issue #13) change nlist references to dict

	(GitHub Issue #48) allow variable substitution for bind/valid paths

	(GitHub Issue #34) add the file_exists function

	(GitHub Issue #63) allow user to specify number of threads for
processing (nthread option)

	(GitHub Issue #61) fix processing of include path CLI argument

	(GitHub Issue #59) add substitute function to replace named values in
string template

	(GitHub Issue #54) convert source files to UTF-8

	(GitHub Issue #49) add warning in docs that all pan source files must
be UTF-8 (also for file_contents function)

	(GitHub Issue #47) fix compiler hang when using escape sequence in
path literal

	(GitHub Issue #43) fix compiler crash when SELF is used as a function

	(GitHub Issue #41) RPM package should not own /usr/bin and /usr/lib

	(GitHub Issue #40) ensure line number and file name are correct for
traceback function

	(GitHub Issue #38) add ip address and netmask functions

	(GitHub Issue #37) ensure line numbers appear in error message for
bad default values

	(GitHub Issue #36) allow to_long to treat values like “08” and “09”

	(GitHub Issue #31) fix options processing for CLI (bad processing
causes failure)

	(GitHub Issue #29) update links in documentation to GitHub from
SourceForge

	(GitHub Issue #15, #24) add OBJECT to debug and error output

	(GitHub Issue #31) panc command line fails

Version 10.0

	(GitHub Issue #27) Remove session directory functionality

	(GitHub Issue #5) Remove deprecated options from panc ant task

	(GitHub Issue #4) Remove panc-old script

	(GitHub Issue #2) Remove deprecation level attribute in favor of
warnings attribute in pan-syntax-check mojo

	(GitHub Issue #26) Restore backward compatibility for gzip output
flag

Version 9.3

No additional changes besides those in RC1 and RC2.

Version 9.3-RC2

	(SF Bug #3585672) Permit both lower and upper case strings for
warnings flag in ant and maven tasks.

	(SF Bug #3585346) Misleading deprecation message for debug element

Version 9.3-RC1

	(SF Bug #3582159) Uncaught exception when creating XML transformation

	(SF RFE #3581805) Remove support for XMLDB format.

	(SF RFE #3581801) Change dependency file extension from *.xml.dep to
*.dep.

	(SF RFE #3535682) Allow multiple output formats to be generated from
CLI.

	(SF Bug #3535413) Check timestamps of all requested output file
formats.

	(SF Bug #3529737) Non-object templates can be accessed via value().

	(SF Bug #3579769) Tests failed because of change in TreeSet contract
in Java 1.7.

	(SF Bug #3579770) Shell scripts use bash syntax. Explicitly use bash
in she-bang lines.

	(SF Bug #3581163) Invalid replacement string in replace() raises
uncaught exception.

	(SF RFE #3489988) Allow negative values in range expressions.

	The include syntax without required braces is now allowed.

	The panc command no longer includes the possibility to process
annotations. This functionality is now in a separate command
panc-annotations.

	The panc command now uses a streamlined set of options that are
not compatible with the previous one. The previous one can be invoked
with the panc-old command.

Version 9.2

	(SF RFE #3489506) Provide a pan maven archetype. A rudimentary
implementation is available which uses the panc maven plugin.

	(SF RFE #3489504) Provide a maven build mojo. A rudimentary
implementation is available in the panc maven plugin.

	(SF RFE #3489048) Switch unit tests to use the pan XML format instead
of xmldb.

	(SF RFE #3489084) Remove support for panx extension. This has been
removed as an XML input format is no longer in the roadmap.

	(SF RFE #3477756) Provide JSON output option. Initial JSON formatter
is available; detailed serialization may change based on feedback.
The pan compiler now includes the GSON library (Apache 2 license) to
handle the JSON serialization.

	(SF RFE #3477753) Deprecate xmldb format. Use the standard pan XML
format instead of the xmldb format.

	(SF Bug #3488948) Annotation information in pan book is inaccurate.
The description has been correct and expanded somewhat.

Version 9.1

	(SF Bug #3485801) pan does not build on Windows; full build and unit
tests now run correctly on windows

	(SF Bug #3485492) file_contents does not work correctly on
Windows; problems with file name handling have been resolved

	(SF Bug #3483938) Fix the README file to contain information on
changes up through the production 9.0 release.

Version 9.0

Production release contains the same features as RC3. All version
numbers will be considered production releases unless marked explicitly
as alpha, beta, or release candidates.

Version 9.0.0-RC3

	(SF RFE #3422390) The root element used as the starting point for all
machine profiles can be specified from the command line and ant task.
This allows the injection of data into all of the profiles without
having to include explicitly a template in all machine profiles. This
will be useful for injecting build metadata into the profiles. Note
that the injected data must still follow the global schema (if
defined), otherwise builds will fail with validation errors.

Version 9.0.0-RC2

The documentation has been significantly reorganized with all of the
documentation apart from this README combined into a single “pan book”.

Version 9.0.0-RC1

This release contains the following changes:

	(SF Bug #3171788) Improve error message for format() function when
there is a mismatch between given format string and arguments.

	(SF RFE #3386906) Support for \b (backspace) and \f (form feed)
escape sequences in double-quoted strings.

	(SF Bug #3186921) Dependency calculation in ant task does not work
correctly for namespaced object templates.

Pan Language

Comprehensive overview of the pan language and the pan language compiler.

	Getting Started
	Configuration Language

	Benefits

	Download and Installation

	Validating the Installation

	Invoking the Pan Compiler

	A Whirlwind Tour
	Batch System Description

	Naive Configuration

	Using Namespaces and Includes

	Simple Typing

	Default Values

	Cross-Element and Cross-Machine Validation

	Path Prefixes

	Core Syntax
	Templates

	Comments

	Statements

	Data Types
	Type Hierarchy

	Properties and Primitive Types

	String-Like Types

	Resources

	Special Types

	Data Manipulation Language (DML)
	DML Syntax

	Variables

	Operators

	Flow Control

	Functions
	Built-In Functions

	User-Defined Functions

	Validation
	Forcing Validation

	Implicit Typing

	Binding Primitive Types to Paths

	User-Defined Types

	Default Values

	Advanced Parameter Validation

	Validation Functions

	Validation of Correlated Configuration Parameters

	Cross-Machine Validation

	Schemas

	Modular Configurations
	Include Statement

	Structure Templates

	Advanced Features
	Annotations

	Logging

	Build Metadata

	Performance Considerations
	Use Specific Paths

	Use Escaped Literal Path Syntax

	Use Built-In Functions

	Invoking the Compiler

	Avoid Copying SELF

	Common Idioms
	Configuration File Templates

	Extension Templates

	Global Variables as Switches

	Tri-state Variables

	Troubleshooting
	Compilation Problems

	Common Problems

	Bug Reporting

Getting Started

The pan configuration language allows system administrators to define
simultaneously a site configuration and a schema for validation. As a
core component of the Quattor fabric management toolkit, the pan
compiler translates this high-level site configuration to a
machine-readable representation, which other tools can then use to enact
the desired configuration changes.

Configuration Language

The pan language was designed to have a simple, human-friendly syntax.
In addition, it allows more rigorous validation via its flexible data
typing features when compared to, for instance, XML and XMLSchema.

The name “compiler” is actually a misnomer, as the pan compiler does
much more than a simple compilation. The processing progresses through
five stages:

	compilation

	Compile each individual template (file written in the pan
configuration language) into a binary format.

	execution

	The statements the templates are executed to generate a partial tree
of configuration information. The generated tree contains all
configuration information directly specified by the system
administrator.

	insertion of defaults

	A pass is made through the tree of configuration information during
which any default values are inserted for missing elements. The tree
of configuration information is complete after this stage.

	validation

	The configuration information is frozen and all standard and
user-specified validation is done. Any invalid values or conditions
will cause the processing to abort.

	serialization

	Once the information is complete and valid, it is serialized to a
file. Usually, this file is in an XML format, but other
representations are available as well.

The pan compiler runs through these stages for each “object” template.
Usually there is one object template for each physical machine; although
with the rise of virtualization, it may be one per logical machine.

Benefits

Using the pan language and compiler has the following benefits:

	Declarative language allows easier merging of configurations from
different administrators.

	Encourages organization of configuration by service and function to
allow sharing of configurations between machines and sites.

	Provides simple syntax for definition of configuration information
and validation.

	Ensures a high-level of validation before configurations are
deployed, avoiding interruptions in services and wasted time from
recovery.

The language and compiler are intended to be used with other tools that
manage the full set of configuration files and that can affect the
changes necessary to arrive at the desired configuration. The Quattor
toolkit provides such tools, although the compiler can be easily used in
conjunction with others.

Download and Installation

The pan compiler can be invoked via the Unix (Linux) command line, ant,
or maven. The easiest for the simple examples in this book is the
command line interface. (See Running the Compiler for installation
instructions for all the execution methods.) Locate and download the latest
version of the pan tarball and untar this into a convenient directory. You
can find the packaged versions of the compiler in the releases area of
the GitHub repository.

The pan compiler requires a Java Runtime Environment (JRE) or Java
Development Kit (JDK) 1.6 or later. If you will just be running a binary
version of the pan compiler, the JRE is sufficient; compiling the
sources will require the JDK. Use a complete, certified version of the
Java Virtual Machine.

Warning

The GNU Java Compiler (GJC) distributed with many Linux-based operating
systems is not a certified version of the Java Virtual Machine. The
pan compiler will not run correctly with it.

 Standard Functions

Standard Functions

Pan provides a large (and growing) number of standard functions. These
are treated as operators by the pan compiler implementation and are thus
highly optimized. Consequently, they should be preferred to writing your
own user-defined functions when possible. Because they are built into
the compiler, the argument processing is different than that for
user-defined functions. In particular, some arguments may be evaluated
only when necessary and null can be a valid function argument.

	append

	base64_decode

	base64_encode

	clone

	create

	debug

	delete

	deprecated

	dict

	digest

	error

	escape

	exists

	file_contents

	file_exists

	first

	format

	if_exists

	index

	ip4_to_long

	is_boolean

	is_defined

	is_double

	is_list

	is_long

	is_dict

	is_null

	is_number

	is_property

	is_resource

	is_string

	is_valid

	join

	key

	json_decode

	json_encode

	length

	list

	long_to_ip4

	match

	matches

	merge

	next

	path_exists

	prepend

	replace

	return

	splice

	split

	substitute

	substr

	to_boolean

	to_double

	to_long

	to_lowercase

	to_string

	to_uppercase

	traceback

	unescape

	value

 append

append

Name

append – adds a value to the end of a list

Synopsis

list append (element value)

list append (list target, element value)

list append (variable_reference target, element value)

Description

The append function will add the given value to the end of the
target list. There are three variants of this function. For all of the
variants, an explicit null value is illegal and will terminate the
compilation with an error.

The first variant takes a single argument and always operates on
SELF. It will directly modify the value of SELF and give the
modified list (SELF) as the return value. If SELF does not
exist, is undef, or is null, then an empty list will be created
and the given value appended to that list. If SELF exists but is not
a list, an error will terminate the compilation. This variant cannot be
used to create a compile-time constant.

/result will have the values 1 and 2 in that order
'/result' = list(1);
'/result' = append(2);

The second variant takes two arguments. The first argument is a list
value, either a literal list value or a list calculated from a DML
block. This version will create a copy of the given list and append the
given value to the copy. The modified copy is returned. If the target is
not a list, then an error will terminate the compilation. This variant
can be used to create a compile-time constant as long as the target
expression does not reference information outside of the DML block by
using, for example, the value function.

/result will have the values 1 and 2 in that order
/x will only have the value 1
'/x' = list(1);
'/result' = append(value('/x'), 2);

The third variant also takes two arguments, where the first value is a
variable reference. This variant will take precedence over the second
variant. This variant will directly modify the referenced variable and
return the modified list. If the referenced variable does not exist, it
will be created. As for the other forms, if the referenced target exists
and is not a list, then an error will terminate the compilation.
SELF or descendants of SELF can be used as the target. This
variant can be used to create a compile-time constant if the referenced
variable is an existing local variable. Referencing a global variable
(except via SELF) is not permitted as modifying global variables
from within a DML block is forbidden.

/result will have the values 1 and 2 in that order
'/result' = {
 append(x, 1); # will create local variable x
 append(x, 2);
};

base64_decode

Name

base64_decode – decodes a string that has been encoded in base64 format

Synopsis

string base64_decode (string encoded)

Description

The base64_decode function will return the unencoded value of the
base64 (RFC 2045) encoded argument. If the argument is not a valid
base64 encoded value a fatal error will occur.

/result have the string value 'hello world'
'/result' = base64_decode('aGVsbG8gd29ybGQ=');

base64_encode

Name

base64_encode – encodes a string in base64 format

Synopsis

string base64_encode (string encoded)

Description

The base64_encode function will return the base64 (RFC 2045) encoded
format of the argument.

/result have the string value 'aGVsbG8gd29ybGQ='
'/result' = base64_encode('hello world');

clone

Name

clone – returns a clone (copy) of the argument

Synopsis

element clone (element arg)

Description

The clone function may return a clone (copy) of the argument. If the
argument is a resource, the result will be a “deep” copy of the
argument; subsequent changes to the argument will not affect the clone
and vice versa. Because properties are immutable internally, this
function will not actually copy a property instead returning the
argument itself.

create

Name

create – create a dict from a structure template

Synopsis

dict create (string tpl_name, …)

Description

The create function will return an dict from the named structure
template. The optional additional arguments are key, value pairs that
will be added to the returned dict, perhaps overwriting values from the
structure template. The keys must be strings that contain valid dict
keys (see Path Literals Section). The values can be any element. Null
values will delete the given key from the resulting dict.

description of CD mount entry with the device undefined
(in file 'mount_cdrom.pan')
structure template mount_cdrom;
'device' = undef;
'path' = '/mnt/cdrom';
'type' = 'iso9660';
'options' = list('noauto', 'owner', 'ro');

use from within another template
'/system/mounts/0' = create('mount_cdrom', 'device', 'hdc');

the above is equivalent to the following two lines
'/system/mounts/0' = create('mount_cdrom');
'/system/mounts/0/device' = 'hdc';

debug

Name

debug – print debugging information to the console

Synopsis

string debug (string msg)

string debug (string fmt, element param, …)

Description

This function will print the given string to the console (on stdout) and
return the message as the result. The function also accepts format strings,
similar to the format function. The string has ‘[object] ‘ prepended
to it, where ‘object’ is the name of the object template. This
functionality must be activated either from the command line or via a
compiler option (see compiler manual for details). If this is not
activated, the function will not evaluate the argument and will return
undef.

delete

Name

delete – delete the element identified by the variable expression

Synopsis

undef delete (variable_expression arg)

Description

This function will delete the element identified by the variable
expression given in the argument and return undef. The variable
expression can be a simple or subscripted variable reference (e.g. x,
x[0], x[‘abc’][1], etc.). Only variables local to a DML block can be
modified with this function. Attempts to modify a global variable will
cause a fatal error. For subscripted variable references, this function
has the same effect as assigning the variable reference to null.

/result will contain the list ('a', 'c')
'/result' = {
 x = list('a', 'b', 'c');
 delete(x[1]);
 x;
};

deprecated

Name

deprecated – print deprecation warning to console

Synopsis

string deprecated (long level, string msg)

Description

This function will print the given string to the console (on stderr) and
return the message as the result, if level is less than or equal to
the deprecation level given as a compiler option. If the message is not
printed, the function returns undef. The value of level must be
non-negative.

dict

Name

dict – create an dict from the arguments

Synopsis

dict dict (string key, element property, …)

Description

The dict function returns a new dict consisting of the passed
arguments; the arguments must be key value pairs. All of the keys must
be strings and have values that are legal path terms (see Path Literals
Section).

resulting dict associates name with long value
'/result' = dict(
 'one', 1,
 'two', 2,
 'three', 3,
};

digest

Name

digest – creates a digest of a message using the specified algorithm

Synopsis

string digest (string algorithm, string message)

Description

This function returns a digest of the message using the specified
algorithm. The valid algorithms are: MD2, MD5, SHA,
SHA-1, SHA-256, SHA-384, and SHA-512. The algorithm name
is not case sensitive.

error

Name

error – print message to console and abort compilation

Synopsis

void error (string msg)

void error (string fmt, element param, …)

Description

This function prints the given message to the console (stderr) and
aborts the compilation. The function also accepts format strings,
similar to the format function. The message has ‘[object]’ prepended
to it as a convenience. This function cannot appear neither in variable
subscripts nor in function arguments; a fatal error will occur if found
in either place.

a user-defined function requiring one argument
function foo = {

 if (ARGC != 1) {
 error("foo(): wrong number of arguments: " + to_string(ARGC));
 };

 # normal processing...
};

escape

Name

escape – escape non-alphanumeric characters to allow use as dict key

Synopsis

string escape (string str)

Description

This function escapes non-alphanumeric characters in the argument so
that it can be used inside paths, for instance as an dict key.
Non-alphanumeric characters are replaced by an underscore followed by
the hex value of the character. If the string begins with a digit, the
initial digit is also escaped. If the argument is the empty string, the
returned value is a single underscore ‘_’.

/result will have the value '1_2b1'
'/result' = escape('1+1');

exists

Name

exists – determines if a variable expression, path, or template exists

Synopsis

boolean exists (variable_expression var)

boolean exists (string path)

boolean exists (string tpl)

Description

This function will return a boolean indicating whether a variable
expression, path, or template exists. If the argument is a variable
expression (with or without subscripts) then this function will return
true if the given variable exists; the value of referenced variable is
not used. If the argument is not a variable reference, the argument is
evaluated; the value must be a string. If the resulting string is a
valid external or absolute path, the path is checked. Otherwise, the
string is interpreted as a template name and the existence of this
template is checked.

Note that if the argument is a variable expression, only the existence
of the variable is checked. For example, the following code will always
leave r with a value of true.

v = '/some/absolute/path';
r = exists(v);

If you want to test the path, remove the ambiguity by using a construct
like the following:

v = '/some/absolute/path';
r = exists(v+'');

The value of r in this case will be true if
/some/absolute/path exists or false otherwise.

file_contents

Name

file_contents – provide contents of file as a string

Synopsis

string file_contents (string filename)

string file_contents (string filename, string compression)

Description

This function will return a string containing the contents of the named
file. The file is located using the standard source file lookup
algorithm. Because the load path is used to find the file, this function
may not be used to create a compile-time constant. If the file cannot be
found, an error will be raised.

Optional second argument indication what type of compression is used in the file,
and the contents will be decompressed. Supported compression is gzip.

file_exists

Name

file_exists – determine if the named file exists

Synopsis

string file_exists (string filename)

Description

This function will return a boolean indicating whether the named file
exists. The file is located using the standard source file lookup
algorithm. Because the load path is used to find the file, this function
may not be used to create a compile-time constant.

first

Name

first – initialize an iterator over a resource and return first entry

Synopsis

	boolean first (resource r, variable_expression key,

	variable_expression value)

Description

This function resets the iterator associated with r so that it
points to the beginning of the resource. It will return false if the
resource is empty; true, otherwise. If the resource is not empty,
then it will also set the variable identified by key to the child’s
index and the variable identified by value to the child’s value.
Either key or value may be undef, in which case no
assignment is made. For a list resource key is the child’s numeric
index; for an dict resource, the string value of the key itself. An
example of using first with a list:

compute the sum of the elements inside numlist
numlist = list(1, 2, 4, 8);
sum = 0;
ok = first(numlist, k, v);
while (ok) {
 sum = sum + v;
 ok = next(numlist, k, v);
};
value of sum will be 15

An example of using first with an dict:

put the list of all the keys of table inside keys
table = dict("a", 1, "b", 2, "c", 3);
keys = list();
ok = first(table, k, v);
 while (ok) {
 keys[length(keys)] = k;
 ok = next(table, k, v);
};
keys will be ("a", "b", "c")

format

Name

format – format a string by replacing references to parameters

Synopsis

string format (string fmt, element param, …)

Description

The format function will replace all references within the fmt
string with the values of the referenced elements. This provides
functionality similar to the c-language’s printf function. The
syntax of the fmt string follows that provided in the java language;
see the Formatter entry for full details. When passing a resource as an
argument, the string replacement field should be used.

if_exists

Name

if_exists – check if a template exists, returning template name if it does

Synopsis

string|undef if_exists (string tpl)

Description

The if_exists function checks if the named template exists on the
current load path. If it does, the function returns the name of the
template. If it does not, undef is returned. This can be used to
conditionally include a template:

include {if_exists('my/conditional/template')};

This function should be used with caution as this brings in dependencies
based on the state of the file system and may cause dependency checking
to be inaccurate.

index

Name

index – finds substring within a string or element within a resource

Synopsis

long index (string sub, string arg, long start)

long index (property sub, string list, long start)

string index (property sub, dict arg, long start)

long index (dict sub, list arg, long start)

string index (dict sub, dict arg, long start)

Description

The index function returns the location of a substring within a
string or an element within a resource. In detail the five different
forms perform the following actions.

The first form searches for the given substring inside the given string
and returns its position from the beginning of the string or -1 if
not found; if the third argument is given, starts initially from that
position.

'/s1' = index('foo', 'abcfoodefoobar'); # 3
'/s2' = index('f0o', 'abcfoodefoobar'); # -1
'/s3' = index('foo', 'abcfoodefoobar', 4); # 8

The second form searches for the given property inside the given list of
properties and returns its position or -1 if not found; if the third
argument is given, starts initially from that position; it is an error
if sub and arg’s children are not of the same type.

search in a list of strings (result = 2)
"/l1" = index("foo", list("Foo", "FOO", "foo", "bar"));

search in a list of longs (result = 3)
"/l2" = index(1, list(3, 1, 4, 1, 6), 2);

The third form searches for the given property inside the given named
list of properties and returns its name or the empty string if not
found; if the third argument is given, skips that many matching
children; it is an error if sub and arg’s children are not of
the same type.

simple color table
'/table' = dict('red', 0xf00, 'green', 0x0f0, 'blue', 0x00f);

result will be the string 'green'
'/name1' = index(0x0f0, value('/table'));

result will be the empty string
'/name2' = index(0x0f0, value('/table'), 1);

The fourth form searches for the given dict inside the given list of
dicts and returns its position or -1 if not found. The comparison is
done by comparing all the children of sub, these children must all
be properties. If the third argument is given, starts initially from
that position. It is an error if sub and arg’s children are
not of the same type or if their common children don’t have the same
type.

search a record in a list of records (result = 1, the second dict)
'/ll1' = index(
 dict('key', 'foo'),
 list(
 dict('key', 'bar', 'val', 101),
 dict('key', 'foo')
)
);

search a record in a list of records starting at index (result = 1, the second dict)
'/ll2' = index(
 dict('key', 'foo'),
 list(
 dict('key', 'bar', 'val', 101),
 dict('key', 'foo'),
 dict('key', 'bar', 'val', 101),
 dict('key', 'foo'),
 dict('key', 'bar', 'val', 101),
 dict('key', 'foo')
),
 1
);

The last form searches for the given dict inside the given dict of dicts
and returns its name or the empty string if not found. If the third
argument is given, the function skips that many matching children. It is
an error if sub and arg’s children are not of the same type or
if their common children don’t have the same type.

search for matching dict (result = 'b')
'/nn1' = index(
 dict('key', 'foo'),
 dict(
 'a', dict('key', 'bar', 'val', 101),
 'b', dict('key', 'foo')
)
);

skip first match and return index of second match (result='d')
'/nn2' = index(
 dict('key', 'foo'),
 dict(
 'a', dict('key', 'bar', 'val', 101),
 'b', dict('key', 'foo'),
 'c', dict('key', 'bar', 'val', 101),
 'd', dict('key', 'foo'),
 'e', dict('key', 'bar', 'val', 101),
 'f', dict('key', 'foo')
),
 1
);

ip4_to_long

Name

ip4_to_long – converts an IP address in dotted format with an optional bitmask to a
list of longs

Synopsis

long[] ip4_to_long (string ip)

Description

The ip4_to_long function returns the binary representation of an
IPv4 address or network specification represented as a dotted string,
where the netmask part is optional, like inet_aton does in the C
standard library.

The first element of the return value is the binary representation of
the IP address, where the second, if present, is the binary
representation of the network mask.

This can be used for applying network masks and calculating network
ranges.

variable NETWORK_RANGE_FOR_LOCALHOST = {
 l = ip4_to_long("127.0.0.1/8");
 l[0] & l[1];
};

variable BINARY_LOCALHOST = ip4_to_long("127.0.0.1");

is_boolean

Name

is_boolean – checks to see if the argument is a double

Synopsis

boolean is_boolean (element arg)

Description

The is_boolean function will return true if the argument is a
boolean value; it will return false otherwise.

is_defined

Name

is_defined – checks to see if the argument is anything but undef or null

Synopsis

boolean is_defined (element arg)

Description

The is_defined function will return a true value if the argument
is anything but undef or null; it will return false
otherwise.

is_double

Name

is_double –checks to see if the argument is a double

Synopsis

boolean is_double (element arg)

Description

The is_double function will return true if the argument is a
double value; it will return false otherwise.

is_list

Name

is_list – checks to see if the argument is a double

Synopsis

boolean is_list (element arg)

Description

The is_list function will return true if the argument is a list;
it will return false otherwise.

is_long

Name

is_long – checks to see if the argument is a long

Synopsis

boolean is_long (element arg)

Description

The is_long function will return true if the argument is a long
value; it will return false otherwise.

is_dict

Name

is_dict – checks to see if the argument is an dict

Synopsis

boolean is_dict (element arg)

Description

The is_dict function will return true if the argument is an
dict; it will return false otherwise.

is_null

Name

is_null – checks to see if the argument is null

Synopsis

boolean is_null (element arg)

Description

The is_null function will return a true value if the argument is
null; it will return false otherwise.

is_number

Name

is_number – checks to see if the argument is a number

Synopsis

boolean is_number (element arg)

Description

The is_number function will return a true value if the argument
is a number (long or double); it will return false otherwise.

is_property

Name

is_property – checks to see if the argument is a property

Synopsis

boolean is_property (element arg)

Description

The is_property function will return a true value if the
argument is a property (atomic value); it will return false
otherwise.

is_resource

Name

is_resource – checks to see if the argument is a resource

Synopsis

boolean is_resource (element arg)

Description

The is_resource function will return a true value if the
argument is a resource (collection); it will return false otherwise.

is_string

Name

is_string – checks to see if the argument is a string

Synopsis

boolean is_string (element arg)

Description

The is_string function will return true if the argument is a
string value; it will return false otherwise.

is_valid

Name

is_valid – checks if an element meets the requirements of a certain type

Synopsis

boolean is_valid (type type, element el)

Description

This function checks whether a certain element meets the requirements of
a certain type. The argument can be a variable or an operation, since
these eventually will lead to a certain value. The function can be used as
follows:

type mytype = string(2..);
variable X = "Message";

'/result' = is_valid(mytype, X);

In this case '/result' will be of type boolean and hold true as a value.

join

Name

join – joins the passed arguments

Synposis

string join (string delimeter, list resource)

string join (string delimeter, string arg1, string arg2, …)

Description

This function takes a delimeter and a list of strings, or each of the strings
individually, and joins them with the given delimeter. Only (a list of) strings
can be passed as arguments.

joining a list
'/x' = list("a", "b", "c");
'/rx' = join("-", value('/x')); # This will return "a-b-c"

joining individual arguments
'/rx' = join("-", "a", "b", "c"); # This will also return "a-b-c"

key

Name

key – returns name of child based on the index

Synopsis

string key (dict resource, long index)

Description

This function returns the name of the child identified by its index,
this can be used to iterate through all the children of an dict. The
index corresponds to the key’s position in the list of all keys, sorted
in lexical order. The first index is 0.

'/table' = dict('red', 0xf00, 'green', 0x0f0, 'blue', 0x00f);

'/keys' = {

 tbl = value('/table');
 res = '';
 len = length(tbl);
 idx = 0;
 while (idx < len) {
 res = res + key(tbl, idx) + ' ';
 idx = idx + 1;
 };

 if (length(res) > 0) splice(res, -1, 1);
 return(res);
};
/keys will be the string 'blue green red '

json_decode

Name

json_decode – convert a JSON-encoded string to a PAN data structure

Synopsis

element json_decode (string encoded)

Description

The json_decode function parses the JSON-encoded argument into the
appropriate PAN data structure. The argument can be either a primitive
JSON type, a list or a JSON object. In case of JSON objects, the names of
the object’s properties must conform to the rules for PAN dictionaries.
Notably, JSON property names starting with a number are not allowed.

json_encode

Name

json_encode – convert a PAN data structure to a JSON-encoded string

Synopsis

string json_encode (element arg)

Description

The json_encode function returns the JSON representation of the
argument. It is currently not possible to control the JSON formatting.

Trying to encode undef either directly or embedded into a resource will
fail. null values in lists will appear in the output, but dictionary keys
with the value being null will not be serialized.

length

Name

length – returns size of a string or resource

Synopsis

long length (string str, long length, resource res)

Description

Returns the size of the given string or the number of children of the
given resource.

list

Name

list – create a new list consisting of the function arguments

Synopsis

list list (element elem, …)

Description

Returns a newly created list containing the function arguments.

creates an empty list
'/empty' = list();

define list of two DNS servers
'/dns' = list('137.138.16.5', '137.138.17.6');

long_to_ip4

Name

long_to_ip4 – converts a long into an IP address in dotted format

Synopsis

string long_to_ip4 (long ip)

Description

The long_to_ip4 function converts an IP address represented as a
long into a string with numbers and dots, like inet_ntoa does in the
C standard library.

"/ipaddr" = long_to_ip4(0x01020304); # 1.2.3.4

match

Name

match – checks if a regular expression matches a string

Synopsis

boolean match (string target, string regex)

Description

This function checks if the given string matches the regular expression.

device_t is a string that can only be "disk", "cd" or "net"
type device_t = string with match(self, ’ˆ(disk|cd|net)$’);

matches

Name

matches – returns captured substrings matching a regular expression

Synopsis

string[] matches (string target, string regex)

Description

This function matches the given string against the regular expression
and returns the list of captured substrings, the first one (at index 0)
being the complete matched string.

IPv4 address in dotted number notation
type ipv4 = string with {
 result = matches(self, ’ˆ(\d+)\.(\d+)\.(\d+)\.(\d+)$’);
 if (length(result) == 0)
 return("bad string");
 i = 1;
 while (i <= 4) {
 x = to_long(result[i]);
 if (x > 255) return("chunk " + to_string(i) + " too big: " + result[i]);
 i = i + 1;
 };
 return(true);
};

merge

Name

merge – combine two resources into a single one

Synopsis

resource merge (resource res1, resource res2, …)

Description

This function returns the resource which combines the resources given as
arguments, all of which must be of the same type: either all lists or
all dicts. If more than one dict has a child of the same name, an error
occurs.

/z will contain the list 'a', 'b', 'c', 'd', 'e'
'/x' = list('a', 'b', 'c');
'/y' = list('d', 'e');
'/z' = merge (value('/x'), value('/y'));

next

Name

next – increment iterator over a resource

Synopsis

boolean next (resource res, identifier key, identifier value)

Description

This function increments the iterator associated with res so that it
points to the next child element. The key and value of the next child
are stored in the named variables key and value, either of which
could be undef. The function returns true if the child exists,
or false otherwise.

path_exists

Name

path_exists – determines if a path exists

Synopsis

boolean path_exists (string path)

Description

This function will return a boolean indicating whether the given path
exists. The path must be an absolute or external path. This function
should be used in preference to the exists function to avoid an
ambiguity in handling the argument to exists as a path or variable
reference.

prepend

Name

prepend – adds a value to the beginning of a list

Synopsis

list prepend (element value)

list prepend (list target, element value)

list prepend (variable_reference target, element value)

Description

The prepend function will add the given value to the beginning of
the target list. There are three variants of this function. For all of
the variants, an explicit null value is illegal and will terminate
the compilation with an error.

The first variant takes a single argument and always operates on
SELF. It will directly modify the value of SELF and give the
modified list (SELF) as the return value. If SELF does not
exist, is undef, or is null, then an empty list will be created
and the given value prepended to that list. If SELF exists but is
not a list, an error will terminate the compilation. This variant cannot
be used to create a compile-time constant.

/result will have the values 2 and 1 in that order
'/result' = list(1);
'/result' = prepend(2);

The second variant takes two arguments. The first argument is a list
value, either a literal list value or a list calculated from a DML
block. This version will create a copy of the given list and prepend the
given value to the copy. The modified copy is returned. If the target is
not a list, then an error will terminate the compilation. This variant
can be used to create a compile-time constant as long as the target
expression does not reference information outside of the DML block by
using, for example, the value function.

/result will have the values 2 and 1 in that order
/x will only have the value 1
'/x' = list(1);
'/result' = prepend(value('/x'), 2);

The third variant also takes two arguments, where the first value is a
variable reference. This variant will take precedence over the second
variant. This variant will directly modify the referenced variable and
return the modified list. If the referenced variable does not exist, it
will be created. As for the other forms, if the referenced target exists
and is not a list, then an error will terminate the compilation.
SELF or descendants of SELF can be used as the target. This
variant can be used to create a compile-time constant if the referenced
variable is an existing local variable. Referencing a global variable
(except via SELF) is not permitted as modifying global variables
from within a DML block is forbidden.

/result will have the values 2 and 1 in that order
'/result' = {
 prepend(x, 1); # will create local variable x
 prepend(x, 2);
};

replace

Name

replace – replace all occurrences of a regular expression

Synopsis

string replace (string regex, string repl, string target)

Description

The replace function will replace all occurrences of the given
regular expression with the replacement string. The regular expression
is specified using the standard pan regular expression syntax. The
replacement string may contain references to groups identified within
the regular expression. The group references are indicated with a dollar
sign ($) followed by the group number. A literal dollar sign can be
obtained by preceding it with a backslash.

return

Name

return – exit DML block with given value

Synopsis

element return (element value)

Description

This function interrupts the processing of the current DML block and
returns from it with the given value. This is often used in user-defined
functions.

function facto = {
 if (ARGV[0] < 2) return(1);
 return(ARGV[0] * facto(ARGV[0] - 1));
};

splice

Name

splice – insert string or list into another

Synopsis

string splice (string str, long start, long length, string repl)

list splice (list list, long start, long length, list repl)

Description

The first form of this function deletes the substring identified by
start and length and, if a fourth argument is given, inserts
repl.

'/s1' = splice('abcde', 2, 0, '12'); # ab12cde
'/s2' = splice('abcde', -2, 1); # abce
'/s3' = splice('abcde', 2, 2, 'XXX'); # abXXXe

The second form of this function deletes the children of the given list
identified by start and length and, if a fourth argument is
given, replaces them with the contents of repl.

will be the list 'a', 'b', 1, 2, 'c', 'd', 'e'
'/l1' = splice(list('a','b','c','d','e'), 2, 0, list(1,2));

will be the list 'a', 'b', 'c', 'e'
'/l2' = splice(list('a','b','c','d','e'), -2, 1);

will be the list 'a', 'b', 'XXX', 'e'
'/l3' = splice(list('a','b','c','d','e'), 2, 2, list('XXX'));

Important

This function will *not* modify the arguments directly. Instead a
copy of the input string or list is created, modified, and returned
by the function. If you ignore the return value, then the function
call will have no effect.

split

Name

split – split a string using a regular expression

Synopsis

string[] split (string regex, string target)

string[] split (string regex, long limit, string target)

Description

The split function will split the target string around matches
of the given regular expression. The regular expression is specified
using the standard pan regular expression syntax. If the limit
parameter is not specified, a default value of 0 is used. If the
limit parameter is negative, then the function will match all
occurrences of the regular expression and return the result. A value of
0 will do the same, except that empty strings at the end of the sequence
will be removed. A positive value will return an array with at most
limit entries. That is, the regular expression will be matched at
most limit-1 times; the unmatched part of the string will be
returned in the last element of the list.

substitute

Name

substitute – substitute named values in string template

Synopsis

string substitute (string template)
string substitute (string template, dict substitutions)

Description

The substitute function will replace all named values in the
template, delimited like ‘${myvar}’, with associated values. If only one
argument is given, then the values will be looked up in the local and
global variable definitions. If two arguments are given, then the lookup
will be done in the explicit dict provided; this form will not use
local or global variable values.

variable vars = dict('freq', 3, 'msg', 'hello');

produces string 'say hello 3 times'
'/result' = substitute('say ${msg} ${freq} times', vars);

The substitution allows for recursive references. If you need to have
something like ‘${myvar}’ literally in the string, then use ‘$${myvar}’.
If the template references an undefined value, then an
EvaluationException will be raised.

substr

Name

substr – extract a substring from a string

Synopsis

string substr (string target, long start)

string substr (string target, long start, long length)

Description

This function returns the part of the given string characterised by its
start position (starting from 0) and its length. If length
is omitted, returns everything to the end of the string. If start is
negative, starts that far from the end of the string; if length is
negative, leaves that many characters off the end of the string.

"/s1" = substr("abcdef", 2); # cdef
"/s2" = substr("abcdef", 1, 1); # b
"/s3" = substr("abcdef", 1, -1); # bcde
"/s4" = substr("abcdef", -4); # cdef
"/s5" = substr("abcdef", -4, 1); # c
"/s6" = substr("abcdef", -4, -1); # cde

to_boolean

Name

to_boolean – convert argument to a boolean value

Synopsis

boolean to_boolean (property prop)

Description

This function converts the given property into a boolean value. The
numeric values 0 and 0.0 are considered false; other numbers,
true. The empty string and the string “false” (ignoring case) will
return false; all other strings will return true. The function
will not accept resources.

to_double

Name

to_double – convert argument to a double value

Synopsis

double to_double (property prop)

Description

This function converts the given property into a double.

If the argument is a string, then the string will be parsed to determine
the double value. Any valid literal double syntax can be used. Strings
that do not represent a valid double value will cause a fatal error.

If the argument is a boolean, then the function will return 0.0 or
1.0 depending on whether the boolean value is false or true,
respectively.

If the argument is a long, then the corresponding double value will be
returned.

If the argument is a double, then the value is returned directly.

to_long

Name

to_long – convert argument to a long value

Synopsis

long to_long (property prop)

long to_long (property prop, long radix)

Description

This function converts the given property into a long value.

If the argument is a string, then the string will be parsed to determine
the long value. The string may represent a long value as an octal,
decimal, or hexadecimal value. The syntax is exactly the same as for
specifying literal long values. String values that cannot be parsed as a
long value will result in an error. If the radix is supplied, then it
will be used for the conversion. When using the radix, string values
should not be prefixed with the radix. That is, use
to_long('ff', 16) or to_long('0xff').

If the argument is a boolean, then the return value will be either 0
or 1 depending on whether the boolean is false or true,
respectively.

If the argument is a double value, then the double value is rounded to
the nearest long value.

If the argument is a long value, it is returned directly.

to_lowercase

Name

to_lowercase – change all uppercase letters to lowercase

Synopsis

string to_lowercase (string target)

Description

The to_lowercase function will convert all uppercase letters in the
target to lowercase. The United States (US) locale is forced for the
conversion to guarantee consistent behavior independent of the current
default locale.

to_string

Name

to_string – convert argument to a string value

Synopsis

string to_string (element elem)

Description

This function will convert the argument into a string. The function will
create a reasonable human-readable representation of all data types,
including lists and dicts.

to_uppercase

Name

to_uppercase – change all lowercase letters to uppercase

Synopsis

string to_uppercase (string target)

Description

The to_uppercase function will convert all lowercase letters in the
target to uppercase. The United States (US) locale is forced for the
conversion to guarantee consistent behavior independent of the current
default locale.

traceback

Name

traceback – print message and traceback to console

Synopsis

string traceback (string msg)

Description

Prints the argument and a traceback from the current execution point to
the console (stderr). Value returned is the argument. An argument that
is not a string will cause a fatal error; the traceback will still be
printed. This may be selectively enabled or disabled via a compiler
option. See the compiler manual for details.

unescape

Name

unescape – replaces escaped characters with ASCII characters

Synopsis

string unescape (string str)

Description

This function replaces escaped characters in the given string str to
get back the original string. This is the inverse of the escape
function.

value

Name

value – retrieve a value specified by a path

Synopsis

element value (string path)
element value (string path, element default)

Description

This function returns the element identified by the given path, which
can be an external path. An error occurs if there is no such element
and no (optional) default is provided.
If a default element is defined as second argument,
and either there is no element for the given path or
the (current) element of the given path is undef,
the default element is returned.

/y will be 200
'/x' = 100;
'/y' = 2 * value('/x');

/z will be (the default) 10
'/z' = value('/nopath', 10);

/v will be (the default) 5
'/u' = undef;
'/v' = value('/u', 5);

 Command Reference

Command Reference

The pan distributions provide a set of commands that allow the compiler
to be invoked and that demonstrate how to analyze available logging
information. These commands are provided for ease of use for one-off
tasks. The compiler can be more efficiently invoked via Apache Ant or
Maven for automated use of the compiler in production.

	panc

	panc-annotations

	panc-build-stats.pl

	panc-call-tree.pl

	panc-compile-stats.pl

	panc-memory.pl

	panc-profiling.pl

	panc-threads.pl

 panc

panc

Name

panc – compile pan language templates

Synopsis

panc
[--no-debug | --debug]
[--debug-ns-include regex]
[--debug-ns-exclude regex]
[--initial-data dict-dml]
[--include-path path]
[--output-dir dir]
[--formats formats]
[--java-opts java-options]
[--max-iteration limit]
[--max-recursion limit]
[--nthread number]
[--no-disable-escaping | --disable-escaping]
[--logging string]
[--log-file file]
[--warnings flag]
[-v | --no-verbose | --verbose]
[-h | --no-help | --help]
[--version]
[template …]

Description

The panc command will compile a collection of pan language templates
into a set of machine configuration files. This command, with its
reorganized and simplified options, replaces the older panc command.

	--no-debug, --debug

	Enable or disable all debugging. By default, debugging is turned
off.

	--debug-ns-include=

	Define a pattern to selectively enable the pan debug and
traceback functions. Those functions will be enabled for
templates where the template name matches one of the include regular
expressions and does not match an exclude regular expression. This
option may appear multiple times.

	--debug-ns-exclude=

	Define a pattern to selectively disable the pan debug and
traceback functions. Those functions will be disabled for
templates where the template name matches one of the exclude regular
expressions. This option may appear multiple times. Exclusion takes
precedence over inclusion.

	--initial-data=

	A DML expression that evaluates to an dict. This value will be used
as the starting dict for all object templates. This is a convenient
mechanism for injecting build numbers and other metadata in the
profiles.

	--include-path=

	Defines the source directories to search when looking for templates.
The value must be a list of absolute directories delimited by the
platform’s path separator. If this is not specified, the current
working directory is used.

	--output-dir=

	Set where the machine configuration files will be written. If this
option is not specified, then the current working directory is used
by default.

	--formats=

	A comma separated list of desired output formats. Allowed values are
“pan”, “pan.gz”, “xml”, “xml.gz”, “json”, “json.gz”, “txt”, “dep”, “dep.gz”
and “dot”. The default is value is “pan,dep”.

	--java-opts=

	List of options to use when starting the java virtual machine. These
are passed directly to the java command and must be valid.
Multiple options can be specified by separating them with a space.
When using multiple options, the full value must be enclosed in
quotes.

	--max-iteration=

	Set the limit on the maximum number of permitted loop iterations.
This is used to avoid infinite loops. The default value is 5000.

	--max-recursion=

	Set the limit on the maximum number of permitted recursions. The
default value is 10.

	--nthread=

	The number of threads to use for profile processing. The default
value of zero will use a number equal to the number of CPU cores on
the machine.

	--no-disable-escaping, --disable-escaping

	Enable or disable the escaping of path elements. The default value
is to enable the escaping of path elements.

	--logging=

	Enable compiler logging; possible values are “all”, “none”,
“include”, “call”, “task”, and “memory”. A log file must be
specified with the --log-file option to capture the logging
information.

	--log-file=

	Set the name of the file to use to store logging information.

	--warnings=

	Possible values are “on”, “off”, and “fatal”. The last value will
turn all warnings into fatal errors.

	-v, --no-verbose, --verbose

	At the end of a compilation, print run statistics including the
numbers of files processed, total time, and memory used. The default
is not to print these values.

	-h, --no-help, --help

	Print a short summary of command usage if requested. No other
processing is done if this option is given.

	--version

	Prints pan compiler version.

The panc command is just a wrapper script around the java
command to simplify setting various options. The typical case is that
the command is invoked without options and just a list of object
templates as the arguments. Larger sets of templates will need to set
the memory option for the Java Virtual Machine; this should be done
through the --java-opts option.

panc-annotations

Name

panc-annotations – process annotations in pan configuration files

Synopsis

panc-annotations
[--base-dir base-directory]
[--output-dir dir]
[--java-opts jvm-options]
[-v | --no-verbose | --verbose]
[-h | --no-help | --help]
[--version]
[template …]

Description

The panc-annotations command will process the annotations contains
within pan configuration files within the given base directory.

	--base-dir=

	Defines a base directory containing all pan configuration files to
process. The default is value is the current working directory.

	--output-dir=

	Set where the annotation files will be written. If this option is
not specified, then the current working directory is used by
default.

	--java-opts=

	List of options to use when starting the java virtual machine. These
are passed directly to the java command and must be valid.
Multiple options can be specified by separating them with a space.
When using multiple options, the full value must be enclosed in
quotes.

	-v, --no-verbose, --verbose

	At the end of a compilation, print run statistics including the
numbers of files processed, total time, and memory used. The default
is not to print these values.

	-h, --no-help, --help

	Print a short summary of command usage if requested. No other
processing is done if this option is given.

	--version

	Prints pan compiler version.

The panc-annotations command is just a wrapper script around the
java command to simplify setting various options.

panc-build-stats.pl

Name

panc-build-stats.pl – create a report of panc build statistics

Synopsis

panc-build-stats.pl [--help] {logfile}

Description

The panc-build-stats.pl script will analyze a panc log file and
report build statistics. The script takes the name of the log file as
its only argument. If no argument is given or the --help option is
used, a short usage message is printed. The log file must have been
created with “task” logging enabled.

The script will extract the time required to execute, to set default
values, to validate the configuration, to write the XML file, and to
write a dependency file. It will also report the “build” time which is
the time for executing, setting defaults, and validating an object file.

The analysis is written to the standard output, but may be saved in a
file using standard IO stream redirection. The format of the file is
appropriate for the R statistical analysis package, but should be
trivial to import into excel or any other analysis package.

Example

If the output from the command is written to the file build.txt,
then the following R script will do a simple analysis of the results.
This will provide statistical results on the various build phases and
show histograms of the distributions.

R-script for simple analysis of build report
bstats <- read.table("build.txt")
attach(bstats)
summary(bstats)
hist(build, nclass=20)
hist(execute, nclass=20)
hist(execute, nclass=20)
hist(defaults, nclass=20)
hist(validation, nclass=20)
hist(xml, nclass=20)
hist(dep, nclass=20)
detach(bstats)

panc-call-tree.pl

Name

panc-call-tree.pl – create a graph of pan call tree

Synopsis

panc-call-tree.pl [--help] [--format=dot\|hg] {logfile}

Description

The panc-call-tree.pl script will analyze a panc log file and create
a graph of the pan call tree. One output file will be created for each
object template. The script takes the name of the log file as its only
argument. If no argument is given or the --help option is used, a
short usage message is printed. The log file must have been created
with “call” logging enabled.

The graphs are written in either “dot” or “hypergraph” format.
Graphviz [http://www.graphviz.org/] can be used to visualize graphs
written in dot format.
Hypergraph [http://hypergraph.sourceforge.net/] can be used to
visualize graphs written in hypergraph format. Note that all “includes”
are shown in the graph; in particular unique and declaration templates
will appear in the graph wherever they are referenced.

panc-compile-stats.pl

Name

panc-compile-stats.pl – create a report of panc compilation statistics

Synopsis

panc-compile-stats.pl [--help] {logfile}

Description

The panc-compile-stats.pl script will analyze a panc log file and
report compilation statistics. The script takes the name of the log file
as its only argument. If no argument is given or the --help option
is used, a short usage message is printed. The log file must have been
created with “task” logging enabled.

The script will extract the start time of each compilation and its
duration. This compilation is the time to parse a template file and
create the internal representation of the template. The analysis is
written to the standard output, but may be saved in a file using
standard IO stream redirection. The format of the file is appropriate
for the R statistical analysis package, but should be trivial to import
into excel or any other analysis package.

Example

If the output from the command is written to the file compile.txt,
then the following R script will create a “high-density” plot of the
information. This graph shows a vertical line for each compilation,
where the horizontal location is related to the start time and the
height of the line the duration.

R-script for simple analysis of compile report
cstats <- read.table("compile.txt")
attach(cstats)
plot(start/1000, duration, type="h", xlab="time (s)", ylab="duration (ms)")
detach(cstats)

panc-memory.pl

Name

panc-memory.pl – create a report of panc memory utilization

Synopsis

panc-memory.pl [--help] {logfile}

Description

The panc-memory.pl script will analyze a panc log file and report on
the memory usage. The script takes the name of the log file as its only
argument. If no argument is given or the --help option is used, a
short usage message is printed. The log file must have been created
with “memory” logging enabled.

The script will extract the heap memory usage of the compiler as a
function of time. The memory use is reported in megabytes and the times
are in milliseconds. Usually one will want to use this information in
conjunction with the thread information to understand the memory use as
it relates to general compiler activity. Note that java uses
sophisticated memory management and garbage collection techniques;
fluctuations in memory usage may not be directly related to the compiler
activity at any instant in time.

Example

If the output from the command is written to the file memory.txt,
then the following R script will create a plot of the memory utilization
as a function of time.

R-script for simple analysis of memory report
mstats <- read.table("memory.txt")
attach(mstats)
plot(time/1000, memory, xlab="time (s)", ylab="memory (MB)", type="l")
detach(mstats)

panc-profiling.pl

Name

panc-profiling.pl – generate profiling information from panc log file

Synopsis

panc-profiling.pl [--help] [--usefunctions] {logfile}

Description

The panc-profiling.pl script will analyze a panc log file and report
profiling information. The script takes the name of the log file as its
first argument. The second argument determines if function call
information will be included (flag=1) or not (flag=0). By default, the
function call information is not included. If no argument is given or
the --help option is used, a short usage message is printed. The
log file must have been created with “call” logging enabled.

Two files are created for each object template: one with ‘top-down’
profile information and the other with ‘bottom-up’ information.

The top-down file contains a text representation of the call tree with
each entry giving the total time spent in that template and any
templates called from that template. At each level, one can use this to
understand the relative time spent in a node and each direct descendant.

The bottom-up file provides how much time is spent directly in each
template (or function), ignoring any time spent in templates called from
it. This allows one to see how much time is spent in each template
regardless of how the template (or function) was called.

All of the timing information is the “wall-clock” time, so other
activity on the machine and the logging itself can influence the output.
Nonetheless, the profiling information should be adequate to understand
inefficient parts of a particular build.

panc-threads.pl

Name

panc-threads.pl – create a report of thread activity

Synopsis

panc-threads.pl [--help] {logfile}

Description

The panc-threads.pl script will analyze a panc log file and report
on build activity per thread. The script takes the name of the log file
as its only argument. If no argument is given or the --help option
is used, a short usage message is printed. The log file must have been
created with “task” logging enabled.

The script will give the start time of build activity on any particular
thread and the ending time. This can be used to understand the build and
thread activity in a particular compilation. The times are given in
milliseconds relative to the first entry in the log file.

Example

If the output from the command is written to the file thread.txt,
then the following R script will create a plot showing the duration of
the activity on each thread.

R-script for simple analysis of thread report
tstats <- read.table("threads.txt")
attach(tstats)
plot(stop/1000,thread, type="n", xlab="time (s)", ylab="thread ID")
segments(start/1000, thread, stop/1000, thread)
detach(tstats)

 Getting the Compiler

Getting the Compiler

You will need to download and install the pan language compiler in order to
use it. This chapter explains where to obtain the compiler and how to
install it.

	Binary Distributions

	Source

	Installation

 Binary Distributions

Binary Distributions

Current binary packages (v10.1 and later) are available from the GitHub
repository in a variety of formats.

https://github.com/quattor/pan/releases

Older releases (previous to 10.1) are available from SourceForge:

http://sourceforge.net/projects/quattor/files/panc/

Source

The source for the pan compiler is managed through a git repository on
GitHub. The software can be checked out with the following command

git clone git://github.com/quattor/pan.git

This provides a read-only copy of the pan repository. Patches to the
compiler can be provided via GitHub pull requests.

The master branch is the main development branch. Although an effort is
made to ensure that this code functions correctly, there may be times
when it is broken. Released versions can be found through the named
branches and tags. Use the git commands

git branch -r
git tag -l

to see the available branches and tags.

Building

Correctly building the Java-implementation of the pan compiler requires
version 1.6.0 or later of a Java Development Kit (JDK). Many linux
distributions include the GNU implementation of Java. The GNU
implementation cannot build or run the pan compiler correctly. Full
versions of Java for linux, Solaris, and Windows can be obtained from
Oracle. Maven can be obtained from the Apache Foundation web site.

The build of the compiler is done via Apache Maven that also depends on
Java. For Maven to find the correct version of the compiler, the
environment variable JAVA_HOME should be defined

export JAVA_HOME=<path to java area>

or

setenv JAVA_HOME <path to java area>

depending on the type of shell that you use. After that, the entire
build can be accomplished with

mvn clean package

where the current working directory is the root of the directory checked
out from subversion. The default build will compile all of the java
sources, run the unit tests, and package the compiler. Tarballs (plain,
gzipped, and bzipped) as well as a zip file are created on all
platforms. The build will also create an RPM on platforms that support
it. The final packages can be found in the target subdirectory.

Note

Current builds of the compiler are done with Maven 3; the build
should work for any Maven version 2.2.1 or later.

 Running the Compiler

Running the Compiler

To facilitate the use of the pan configuration language compiler in
different contexts, several mechanisms for running the compiler are
supported, ranging from direct invocation from the command line to use
within build frameworks like ant and maven.

The performance of the compiler can vary significantly depending on how
the compiler is invoked and on what options are used. Some general
points to keep in mind are:

	For large builds, try to start the underlying Java Virtual Machine
(JVM) only once. That is, avoid the command line interface and
instead use one of the build framework integrations.

	The pan compiler can be memory-intensive to medium to large-scale
builds. Use the verbose output to see the allocated and used heap
space. Increase the allocated memory for the JVM if the used memory
exceeds about 80% of the total.

	Other JVM optimizations and options can improve performance. Check
out what options are available with your Java implementation and
experiment with those options.

The following sections provide details on the supported mechanisms for
invoking the pan configuration language compiler.

	Command Line

	Using java Command

	Maven

	Ant

	Invocation Inside Eclipse

	Displaying the compiler version

 Command Line

Command Line

The compiler can be invoked from the command line by using panc.
This is a script, which works in Unix-like environments, that starts a
Java Virtual Machine and invokes the compiler.

The full list of options can be obtained with the --help option or
by looking on the relevant man page.

Using java Command

If the Java compiler class is being directly invoked via the java
command, then the option -Xmx must be used to change the VM memory
available (for any reasonably sized compilation). For example to start
java with 1024 MB of memory, the following command and options can
be used

java -Xmx1024M org.quattor.pan.Compiler [options...]

The same can be done for other options. The options are the same as for
the panc command, except that the java options parameter is not
supported.

Maven

The pan compiler release contains a simple maven plug-in that will
perform a pan syntax check and build a simple set of files. The plug-in
is available from the central maven repository. To use this, you will
need to configure maven for that repository. A maven archetype is also
provided that can be used to generate a working skeleton that
demonstrates the pan maven plugin.

Warning

The options of the plug-in have changed from the previous version.
They mirror those of the panc script. Details for the options
are given below.

 Index

Index

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Pan Language Compiler Documentation

 		
 Release Notes

 		
 License

 		
 Support

 		
 Upcoming Changes

 		
 Change Log

 		
 Version 10.4

 		
 Version 10.3

 		
 Version 10.2

 		
 Version 10.1

 		
 Version 10.0

 		
 Version 9.3

 		
 Version 9.3-RC2

 		
 Version 9.3-RC1

 		
 Version 9.2

 		
 Version 9.1

 		
 Version 9.0

 		
 Version 9.0.0-RC3

 		
 Version 9.0.0-RC2

 		
 Version 9.0.0-RC1

 		
 Pan Language

 		
 Getting Started

 		
 Configuration Language

 		
 Benefits

 		
 Download and Installation

 		
 Validating the Installation

 		
 Invoking the Pan Compiler

 		
 A Whirlwind Tour

 		
 Batch System Description

 		
 Naive Configuration

 		
 Using Namespaces and Includes

 		
 Simple Typing

 		
 Default Values

 		
 Cross-Element and Cross-Machine Validation

 		
 Path Prefixes

 		
 Core Syntax

 		
 Templates

 		
 Comments

 		
 Statements

 		
 Data Types

 		
 Type Hierarchy

 		
 Properties and Primitive Types

 		
 String-Like Types

 		
 Resources

 		
 Special Types

 		
 Data Manipulation Language (DML)

 		
 DML Syntax

 		
 Variables

 		
 Operators

 		
 Flow Control

 		
 Functions

 		
 Built-In Functions

 		
 User-Defined Functions

 		
 Validation

 		
 Forcing Validation

 		
 Implicit Typing

 		
 Binding Primitive Types to Paths

 		
 User-Defined Types

 		
 Default Values

 		
 Advanced Parameter Validation

 		
 Validation Functions

 		
 Validation of Correlated Configuration Parameters

 		
 Cross-Machine Validation

 		
 Schemas

 		
 Modular Configurations

 		
 Include Statement

 		
 Structure Templates

 		
 Advanced Features

 		
 Annotations

 		
 Logging

 		
 Build Metadata

 		
 Performance Considerations

 		
 Use Specific Paths

 		
 Use Escaped Literal Path Syntax

 		
 Use Built-In Functions

 		
 Invoking the Compiler

 		
 Avoid Copying SELF

 		
 Common Idioms

 		
 Configuration File Templates

 		
 Extension Templates

 		
 Global Variables as Switches

 		
 Tri-state Variables

 		
 Troubleshooting

 		
 Compilation Problems

 		
 Common Problems

 		
 Bug Reporting

 		
 Standard Functions

 		
 append

 		
 Name

 		
 Synopsis

 		
 Description

 		
 base64_decode

 		
 Name

 		
 Synopsis

 		
 Description

 		
 base64_encode

 		
 Name

 		
 Synopsis

 		
 Description

 		
 clone

 		
 Name

 		
 Synopsis

 		
 Description

 		
 create

 		
 Name

 		
 Synopsis

 		
 Description

 		
 debug

 		
 Name

 		
 Synopsis

 		
 Description

 		
 delete

 		
 Name

 		
 Synopsis

 		
 Description

 		
 deprecated

 		
 Name

 		
 Synopsis

 		
 Description

 		
 dict

 		
 Name

 		
 Synopsis

 		
 Description

 		
 digest

 		
 Name

 		
 Synopsis

 		
 Description

 		
 error

 		
 Name

 		
 Synopsis

 		
 Description

 		
 escape

 		
 Name

 		
 Synopsis

 		
 Description

 		
 exists

 		
 Name

 		
 Synopsis

 		
 Description

 		
 file_contents

 		
 Name

 		
 Synopsis

 		
 Description

 		
 file_exists

 		
 Name

 		
 Synopsis

 		
 Description

 		
 first

 		
 Name

 		
 Synopsis

 		
 Description

 		
 format

 		
 Name

 		
 Synopsis

 		
 Description

 		
 if_exists

 		
 Name

 		
 Synopsis

 		
 Description

 		
 index

 		
 Name

 		
 Synopsis

 		
 Description

 		
 ip4_to_long

 		
 Name

 		
 Synopsis

 		
 Description

 		
 is_boolean

 		
 Name

 		
 Synopsis

 		
 Description

 		
 is_defined

 		
 Name

 		
 Synopsis

 		
 Description

 		
 is_double

 		
 Name

 		
 Synopsis

 		
 Description

 		
 is_list

 		
 Name

 		
 Synopsis

 		
 Description

 		
 is_long

 		
 Name

 		
 Synopsis

 		
 Description

 		
 is_dict

 		
 Name

 		
 Synopsis

 		
 Description

 		
 is_null

 		
 Name

 		
 Synopsis

 		
 Description

 		
 is_number

 		
 Name

 		
 Synopsis

 		
 Description

 		
 is_property

 		
 Name

 		
 Synopsis

 		
 Description

 		
 is_resource

 		
 Name

 		
 Synopsis

 		
 Description

 		
 is_string

 		
 Name

 		
 Synopsis

 		
 Description

 		
 is_valid

 		
 Name

 		
 Synopsis

 		
 Description

 		
 join

 		
 Name

 		
 Synposis

 		
 Description

 		
 key

 		
 Name

 		
 Synopsis

 		
 Description

 		
 json_decode

 		
 Name

 		
 Synopsis

 		
 Description

 		
 json_encode

 		
 Name

 		
 Synopsis

 		
 Description

 		
 length

 		
 Name

 		
 Synopsis

 		
 Description

 		
 list

 		
 Name

 		
 Synopsis

 		
 Description

 		
 long_to_ip4

 		
 Name

 		
 Synopsis

 		
 Description

 		
 match

 		
 Name

 		
 Synopsis

 		
 Description

 		
 matches

 		
 Name

 		
 Synopsis

 		
 Description

 		
 merge

 		
 Name

 		
 Synopsis

 		
 Description

 		
 next

 		
 Name

 		
 Synopsis

 		
 Description

 		
 path_exists

 		
 Name

 		
 Synopsis

 		
 Description

 		
 prepend

 		
 Name

 		
 Synopsis

 		
 Description

 		
 replace

 		
 Name

 		
 Synopsis

 		
 Description

 		
 return

 		
 Name

 		
 Synopsis

 		
 Description

 		
 splice

 		
 Name

 		
 Synopsis

 		
 Description

 		
 split

 		
 Name

 		
 Synopsis

 		
 Description

 		
 substitute

 		
 Name

 		
 Synopsis

 		
 Description

 		
 substr

 		
 Name

 		
 Synopsis

 		
 Description

 		
 to_boolean

 		
 Name

 		
 Synopsis

 		
 Description

 		
 to_double

 		
 Name

 		
 Synopsis

 		
 Description

 		
 to_long

 		
 Name

 		
 Synopsis

 		
 Description

 		
 to_lowercase

 		
 Name

 		
 Synopsis

 		
 Description

 		
 to_string

 		
 Name

 		
 Synopsis

 		
 Description

 		
 to_uppercase

 		
 Name

 		
 Synopsis

 		
 Description

 		
 traceback

 		
 Name

 		
 Synopsis

 		
 Description

 		
 unescape

 		
 Name

 		
 Synopsis

 		
 Description

 		
 value

 		
 Name

 		
 Synopsis

 		
 Description

 		
 Command Reference

 		
 panc

 		
 Name

 		
 Synopsis

 		
 Description

 		
 panc-annotations

 		
 Name

 		
 Synopsis

 		
 Description

 		
 panc-build-stats.pl

 		
 Name

 		
 Synopsis

 		
 Description

 		
 Example

 		
 panc-call-tree.pl

 		
 Name

 		
 Synopsis

 		
 Description

 		
 panc-compile-stats.pl

 		
 Name

 		
 Synopsis

 		
 Description

 		
 Example

 		
 panc-memory.pl

 		
 Name

 		
 Synopsis

 		
 Description

 		
 Example

 		
 panc-profiling.pl

 		
 Name

 		
 Synopsis

 		
 Description

 		
 panc-threads.pl

 		
 Name

 		
 Synopsis

 		
 Description

 		
 Example

 		
 Getting the Compiler

 		
 Binary Distributions

 		
 Source

 		
 Building

 		
 Installation

 		
 Full Package Installation

 		
 Eclipse Integration

 		
 Running the Compiler

 		
 Command Line

 		
 Using java Command

 		
 Maven

 		
 Ant

 		
 Nested Elements

 		
 Setting JVM Parameters

 		
 Invocation Inside Eclipse

 		
 Displaying the compiler version

